
Programming_Languages

Programming_Languages ii

COLLABORATORS

TITLE :

Programming_Languages

ACTION NAME DATE SIGNATURE

WRITTEN BY January 2, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Programming_Languages iii

Contents

1 Programming_Languages 1

1.1 Programming Languages - A Comparison . 1

1.2 Speed comparison . 1

1.3 Test #1 (for loop) . 2

1.4 Test #2 (CLI window output) . 2

1.5 Abbreviations . 3

1.6 How . 3

1.7 Notes concerning the execution speeds . 3

1.8 Notes concerning the program lengths . 4

1.9 General comparison . 4

1.10 assembler . 5

1.11 basic . 5

1.12 C/C++ . 6

1.13 pascal . 7

1.14 Modula and Oberon . 7

1.15 Other languages . 8

1.16 conclusion . 8

1.17 Basic . 8

1.18 C/C++ . 9

1.19 Pascal . 10

1.20 Modula / Oberon . 10

1.21 Test programs . 11

1.22 author . 11

Programming_Languages 1 / 11

Chapter 1

Programming_Languages

1.1 Programming Languages - A Comparison

This document contains a comparison of some programming languages, ←↩
including

C/C++, Basic, and Pascal.

Speed comparison
- Execution speed, size of executable

General comparison
- Capabilities, hints

Test programs
- Listings

Author
- Address

1.2 Speed comparison

Tables

Test #1 (for loop)

Test #2 (CLI window output)

Abbreviations
Notes

How the execution times have been measured

Programming_Languages 2 / 11

Notes concerning the execution speeds

Notes concerning the program lengths

1.3 Test #1 (for loop)

A loop counting from 1 to 1,000,000 results in the following execution times
and program lengths:

Language Bytes Ticks

Assembler A68k 48 5.00
ACE 2.0 - ASM 4,568 6.00
BB2 1.9 - ASM 6,228 6.50
StromCPP 1.1 reg. 480 7.00
MaxonC++ 3.1 reg. 708 7.00
Struct 1.0 224 8.00
BCF 77 16,748 8.00
TurboDEX 132 8.00
Dice 2.0 reg. 2,744 8.00
GCC 2.7.0 2,332 9.00
PCQ 1.2d (Phx) 2,308 12.00
Oberon-A 980 14.00
Cyclone 0.94 reg./inl. 496 14.00
HighSpeed Pascal 1.2 1,776 14.00
MaxonPASCAL 3.0 4,588 14.00
StormCPP 1.1 496 15.00
GFA Basic 9,900 16.00
PDC 6,288 16.00
Struct 1.0 224 17.00
MaxonC++ 3.1 752 17.00
StormCPP 1.0 Demo 976 18.00
SAS C 6.56 1,404 18.00
E 2.1b 500 18.50
Cyclone 0.92 500 19.00
M2Amiga 4.1 Demo 1,512 19.00
Turbo Modula-2 2,764 20.00
E 3.2a 524 21.00
BB2 2.1 328 28.00
Oberon_2 728 28.50
ACE 2.37 (Phx) 19,604 34.00
ACE 2.0 42,568 41.00
Maxon/HisoftBasic 3.0 15,768 53.00
Cursor 1.7 32,468 283.00
EXECREXX 884 829.00

1.4 Test #2 (CLI window output)

Writing "Hello, world" 1,000 times in a CLI window results in the following
execution times and program lengths:

Language Bytes Ticks

Programming_Languages 3 / 11

StormCPP 2.0 Demo 6,512 786
MaxonC++ 3.1 856 830
ACE 2.40 (Phx) 28,760 831
BB2 (optimized version) 2,132 834
HighSpeed Pascal 1.2 4,116 836
SAS C 6.56 38,724 841
GCC 2.7.0 58,444 849
Turbo Modula-2 10,324 850
Cyclone 0.92 1,612 860
MaxonPASCAL 3.0 4,628 864
BB2 2.1 4,084 865
PCQ Pascal 1.2d (Phx) 3,004 893
Maxon/Hisoft Basic 3.0 16,032 873
Oberon-A 4,360 925

1.5 Abbreviations

The following abbreviations have been used:

Abbreviation Explanation

reg. register variables have been used
inl. inline functions have been used
Phx Phx assembler and linker have been used
ASM internal assembler has been used
BB2 Blitz Basic 2

1.6 How

The program »exe_timer« has been used to calculate the execution time
of the test programs in intuition ticks (1/50 second). »exe_timer« was
written using HiSoft Basic 2 (Maxon Basic 3).

The results stated above have been measured on an Amiga 4000/040 25 MHz
with 16 MB fast and 2 MB graphics RAM.

All programs have been copied to RAM: before testing them. 2 ticks have been
subtracted from the results computed by »exe_timer« because about 2 ticks
are necessary to load a program using »exe_timer«.

1.7 Notes concerning the execution speeds

DEX uses register variables automagically.

Struct has been tested twice: using register variables and without using
register variables.

SAS C eliminates empty loops - this results in 1,636 bytes and only 1
tick execution time for test #1. SAS C is not faster if register variables

Programming_Languages 4 / 11

are used.

Blitz Basic programs with error checks turned on need about 160 ticks for
test #1.

Maxon/Hisoft Basic programs with error checks turned on need 388 ticks for
test #1.

1.8 Notes concerning the program lengths

Oberon_2 requires the »garbagecollector.library« (11,088 bytes).

EXECREXX requires the »rexxapp.library« (1,568 bytes) and ARexx.

Cursor executables can load the »basic.library« (30 KB) alternatively.

Maxon/Hisoft Basic executables can load the »hbasic2.library« (50 KB)
alternatively, resulting in an executable of 592 bytes for test #1.

Oberon-A: Startup and System/IO/Errors need about 9 KB.

StormCPP executables are significantly shorter if the C++ mode is turned
on.

Cyclone executables are shorter and slower if inlines are turned off.

GCC executables can load the »ixemul.library« (150 KB) alternatively.

1.9 General comparison

This section shows the capabilities of some programming languages ←↩
and gives

you some hints.

Assembler
- A68k, Blink, Phx

Basic
- ACE, Maxon/Hisoft Basic, GFA Basic, Blitz Basic 2

C/C++
- SAS C, GNU C++, Maxon C++, Storm CPP

Pascal
- PCQ, Maxon Pascal, Hisoft Pascal

Modula and Oberon

Programming_Languages 5 / 11

- Turbo Modula, Cyclone, Oberon-A, M2Amiga

Other languages
- E, BCF 77 Fortran, Struct, CanDo, Helm

Conclusion
- How to select your programming language

1.10 assembler

For the speed comparisons, the A68k assembler has been used. It is placed in
the public domain. The blink linker has been used to link the object code
generated by A68k.

The Phx assembler does a whole bunch of optimizations to ensure that the
resulting object files are as fast as possible. To shorten the file length
of your executables, you should use the Phx linker.

Some programming languages do not produce object code directly. They create
an assembly source file and use an assembler to generate an object file.
The object file is then linked to a startup code and a run-time library. In
such cases you should try to use the Phx assembler and linker mentioned
above.

A couple of programming languages offer an integrated assembler. This is
usefull if you write a program in for example C and want to include some
assembler instructions for a time critical procedure. This way, there is no
need for a seperate assembler package any longer.

1.11 basic

The Cursor Basic compiler generates executables directly. It is able to
compile allmost all Amiga Basic source codes. Unfortunately, the resulting
executables are very slow. Screens created by Cursor executables may have
up to 8 bitplanes.

ACE (= Amiga Basic Compiler with Extras) is placed in the public domain. ACE
uses A68k and the blink linker to generate executables. The intermediate
assembler source code it generates is fairly understandable. You should use
the Phx assembler and linker to get shorter and faster executables (in this
case, you must not use the ’$’ char in SUB names; use SUB STRING trim(a$)
instead of SUB trim$(a$), for instance).

ACE supports allmost all Amiga Basic statements and has the following
features:

· integrated assembler (via A68k or PhxAss)
· very good support of the serial device
· gadgets, requesters, speech, gadtools menus, turtle graphics, sound, IFF
· interprocess communication, error handling

Programming_Languages 6 / 11

· include files, external submodules
· random access files can be handled very easily
· programming environment AIDE
· graphical user interface (GUI) creator

Maxon/Hisoft Basic is fully compatible with Amiga Basic and partially with
Microsoft Quick Basic for the PC. It comes with include files for Amiga OS
3.1 and supports AGA screens. The programming environment is very good (like
Hisoft Pascal). The documentation supplied with this Basic compiler is very
good, too.

GFA Basic generates very fast and short executables. Unfortunately, it does
not support Amiga OS 2.0+ directly. ECS/AA screen modes are not possible. The
GFA-Basic interpreter cannot be run wit Amiga OS 2.0+ unless you switch
ECS/AA screen modes and processor caches off. GFA Basic executables are known
to throw a lot of Enforcer hits.

Blitz Basic supports all library functions of the Amiga OS directly; you do
not need to declare any library function. Blitz Basic is usefull if you
want your programs to have a nice user interface. The support for graphics
and game creation is excellent. Blitz Basic executables can get very long if
you use a lot of graphics statements, windows, or requesters. The resulting
executables are quite slow, especially if you need to access files. The AGA
chipset is supported. A GUI creator is included.

Test #2 shows that ACE executables are the fastest ones in writing text to a
CLI window. The Hisoft Basic executable is quite long and slow.

(If you use the library function putstr, the Blitz Basic program needs
only 834 ticks and the size of the executable file is only 2,132 bytes.)

I prefer using ACE and Maxon Basic, but I also continue using GFA and Blitz
Basic for some programs.

1.12 C/C++

SAS/C is the standard C compiler for the Amiga. You should not use SAS/C to
compile C++ source codes because these are converted to C by SAS/C and thus
the resulting executables are very long. (The size of the executable for
test #2 is about 38 KB.)

The PDC compiler does not support all features of ANSI C. VBCC is better.
Both are placed in the public domain.

GNU C/C++ (GCC) is compatible with UNIX C compilers. Using GCC, you can write
UNIX and Amiga programs. C++ executables are even longer than those created
by SAS/C, but they are also faster. GCC is intended for freeware programmers.

The best C/C++ compilers are Maxon C++ and StormCPP. Maxon C++ executables
are slightly more efficient, but StormCPP executables are compatible with
the new pOS operating system and the Power PC processor chip. StormCPP has
the best programming environment, too.

StormCPP includes a fast ANSI C library and a MUI class library. Maxon C++
includes an Intuition class library for an easy creation of C++ programs.

Programming_Languages 7 / 11

The separate Storm Wizard package is used to create graphical user interfaces
very easily.

Test #2 shows that Maxon C++ creates the shortest executable files, but
StormCPP creates the fastest ones. SAS C and GCC executables are very long,
but they are quite fast, too.

I prefer using StormCPP.

1.13 pascal

PCQ is a public domain Pascal compiler. It uses A68k and blink to generate
executables. The new version supports the Phx assembler and linker and is
faster than version 1.2b.

Maxon Pascal and Hisoft Pascal are commercial Pascal compilers. Hisoft Pascal
has the better programming environment and does even support nearly all
statements of Turbo Pascal 5.0 for MS-DOS. This is very usefull if you are
learning Turbo Pascal at school or university and want to write your own
programs. Thus you can run Turbo Pascal on your Amiga and do not have to wait
5 minutes until Windows 95 has booted and Turbo Pascal has been loaded...

The graphics support of Hisoft Pascal is excellent because you are able to
use the graphics capabilities of Turbo Pascal. If you want to write a program
which creates business graphics, you should use Hisoft Pascal.

Test #2 shows that HighSpeed Pascal executables provide the fastest output
to CLI windows.

I prefer using Hisoft Pascal.

1.14 Modula and Oberon

M2Amiga supports all features of the Amiga operating system. The resulting
executables are short and fairly fast.

Turbo Modula is a freeware compiler. It uses DICE C to generate the
executables, thus being able to call functions of the standard C run-time
library.

Cyclone is a new object orientated Modula-2 compiler and is giftware. It
supports multi-threaded executables and is able to compile shared libraries.
Cyclone features register access, static lists and C++ exceptions, for
instance. The new version creates shorter executables than version 0.92.

Oberon_2 is a commercial Oberon-2 compiler. The newest version is Oberon 3.0.

Oberon-A is a free Oberon-2 compiler. It comes with a lot of documentation
and sample source codes, including an Oberon operating system. Oberon-A is
intended for freeware programmers.

Programming_Languages 8 / 11

Test #2 shows that the Turbo Modula-2 executable is the fastest one. (Note
that this is also the longest file.) The Oberon-A executable is very slow.

I prefer using Cyclone.

1.15 Other languages

E is a language similar to C and Pascal. The resulting executables are fast
and short. It is possible to compile shared libraries using E. E has been in
the public domain until version 2.1b. E 3.0+ is shareware.

DEC is similar to but not as powerfull as E.

Struct is a very restricted programming language. The resulting executables
are very short and fast.

EXECREXX is an ARexx "compiler". The resulting executable still needs the
ARexx interpreter and thus is very slow.

BCF 77 is a Fortran compiler. It is shareware. The resulting executables
are very long.

The authoring systems CanDo and Helm are usefull for computer based training.
CanDo executable files are quite long (about 150 KB as for version 2.5), but
they can call the "cando.library" alternatively. The programs generated by
Helm and CanDo are quite slow.

1.16 conclusion

Generally, C/C++ executables are faster than Pascal/Modula/Oberon
executables, which in turn faster are than Basic executables.

On the other side, C++ and Basic executable files can get very long in some
cases.

You should select a programming language which fits your needs concerning the
execution speed and the size of the resulting executable file. If you are a
beginner, I suggest to use Pascal, Modula-2 or Oberon.

If you need fast executables, you should use the library functions provided
by the operating system instead of commands offered by your programming
language. (This is very important if you use a Basic compiler like Blitz
Basic 2.)

1.17 Basic

Test #1

FOR i& = 1 TO 1000000
NEXT i&

Programming_Languages 9 / 11

Test #2

FOR t& = 1 TO 1000
PRINT "Hello, world"

NEXT t&

Optimized version for Blitz Basic 2

a$ = "Hello, world" + CHR$(10) ;add carriage return
FOR t.l = 1 TO 1000

PutStr_ a$;call Amiga OS library function
NEXT t

1.18 C/C++

Test #1

#include <stdio.h>

main()
{

register long t;

for(t = 1; t < 1000000; t++)
{
}

}

Test #2

#include <iostream.h>

main()
{

int i;

for(i = 1; i < 1000; ++i)
{
cout << "Hello, world\n";
}
return(0);

}

Notes

Listing #1 is a C program, whereas listing #2 is a C++ program.

Programming_Languages 10 / 11

1.19 Pascal

Test #1

program test;

var
t: longint;

begin
for t := 1 to 1000000 do
begin
end;

end.

Test #2

program hello;

var
t: integer;

begin
for t := 1 to 1000 do writeln(’Hello, world’);

end.

1.20 Modula / Oberon

Test #1

MODULE test;

VAR i: LONGINT;

BEGIN
FOR i := 1 TO 1000000 DO
END;

END test.

Test #2

MODULE cm;

FROM InOut IMPORT WriteString, WriteLn;

VAR
i: LONGINT;

BEGIN
FOR i := 1 TO 1000 DO

WriteString("Hello World!"); WriteLn;
END;

Programming_Languages 11 / 11

END cm.

1.21 Test programs

The test program #1 consists of a loop counting from 1 to ←↩
1,000,000 using

long integer variables.

Test program #2 writes "Hello, world" 1,000 times and is run in the CLI.

Error checks have been disabled. If necessary, Motorola 68000 object code
generation has been selected.

Basic

C/C++

Pascal

Modula and Oberon

1.22 author

This document may be freely distributed. I hope that it is helpfull for
people looking for a programming language which fits their needs.

Send bug reports and / or suggestions to:

Frank Reibold
Ottberger Weg 13
D-31737 Rinteln

GERMANY

eMail: Peter.Reibold@T-Online.de

	Programming_Languages
	Programming Languages - A Comparison
	Speed comparison
	Test #1 (for loop)
	Test #2 (CLI window output)
	Abbreviations
	How
	Notes concerning the execution speeds
	Notes concerning the program lengths
	General comparison
	assembler
	basic
	C/C++
	pascal
	Modula and Oberon
	Other languages
	conclusion
	Basic
	C/C++
	Pascal
	Modula / Oberon
	Test programs
	author

